用反证法。假设同时有和,且。取,因为,根据,故,时有:
同理,因为,根据,故,时有:
取,那么时有:
这显然是矛盾的,所以假设不成立,本定理证明完毕。
该定理的几何意义是很清晰的,比如之前提到的如下函数,其为,无限逼近于确定的黑色虚线;其为,无限逼近于确定的黑色虚线。这两个极限都是唯一确定的: