Loading [MathJax]/extensions/AssistiveMML.js

链式法则

定理(链式法则).如果u=g(x)x可导,而y=f(u)u=g(x)可导,那么复合函数y=f[g(x)]x可导,其导数为:

\frac{\textrm{d}y}{\textrm{d}x}=f'(u)g'(x)\quad\text{或}\quad\frac{\textrm{d}y}{dx}=\frac{\textrm{d}y}{\textrm{d}u}\cdot\frac{\textrm{d}u}{\textrm{d}x}

证明 .根据u=g(x)x可导,结合上极限与无穷小的关系,有:

\lim_{\Delta x\to 0}\frac{\Delta u}{\Delta x}=g'(x)\implies \frac{\Delta u}{\Delta x}=g'(x)+\alpha_1\implies\Delta u=\Big(g'(x)+\alpha_1\Big)\Delta x\qquad(1)

其中\alpha_1\Delta x\to 0时的无穷小。同样的根据函数y=f(u)u可导,结合上极限与无穷小的关系,有:

\lim_{\Delta u\to 0}\frac{\Delta y}{\Delta u}=f'(u)\implies\frac{\Delta y}{\Delta u}=f'(u)+\alpha_2\implies\Delta y=\Big(f'(u)+\alpha_2\Big)\Delta u\qquad(2)

其中\alpha_2\Delta u\to 0时的无穷小。将(1)式代入(2)式:

\Delta y =\Big(f'(u)+\alpha_2\Big)\Big(g'(x)+\alpha_1\Big)\Delta x\implies\frac{\Delta y}{\Delta x}=\Big(f'(u)+\alpha_2\Big)\Big(g'(x)+\alpha_1\Big)

根据(1)式可知,当\Delta x\to 0趋于0\Delta u\to 0,从而当\Delta x\to 0趋于0时,\alpha_1\to 0\alpha_2\to 0。所以:

\begin{align}
    \frac{\mathrm{d}y}{\mathrm{d}x}
        &=\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0}\left[\Big(f'(u)+\alpha_2\Big)\Big(g'(x)+\alpha_1\Big)\right]\\
        &=\lim_{\Delta x\to 0}\Big(f'(u)g'(x)+f'(u)\alpha_1+g'(x)\alpha_2+\alpha_1\alpha_2\Big)=f'(u)g'(x)
\end{align}

blanksquare
关注马同学
马同学高等数学
微信公众号:matongxue314