我们为什么使用弧度?

在小学我们就学习了角度,然后到了初高中才学习了弧度,但弧度这个后来者却成为了数学中的重要组成部分,取角度而代之,这是为什么?

简单的回答就是,弧度使得代数运算更简单,下面来详细解释下。

往下面看的时候需要你对角度、弧度有所了解,如果不清楚可以先看“为什么会有弧度制”这篇文章,还可以扩展看下这里这里

1 角的度量

首先来清晰下本文要解决的问题,让我们从角的定义说起。角可看作是旋转运动的产物:

角的大小可以用多种方式来度量:

解释下上面这个动画:

  • 角度是这么度量的:当没有旋转时,角的大小记作,当旋转了时,记作,旋转一周记作
  • 弧度是这么度量的:当没有旋转时,角的大小记作,旋转了时,记作,旋转一周记作
  • 当然还可以有别的度量方式,比如没有旋转时,角的大小记作,旋转一周记作,等等

在这么多计量方式中,弧度会使得代数运算更简单,这就是本文要解释的核心问题。

2 直觉

我们先通过直觉来解释下为什么弧度会更好:

        (1)角度认为旋转一周,数值会从变化到。这种计量方法是古巴比伦人发明的,可能源于古巴比伦一直使用进制,还可能因为容易被整除,其真因数除了和自身以外,一共有个(),所以很多特殊角的角度都是整数。

不过从数学角度看,上面的理由都不太重要,古巴比伦人这样发明其实蛮随意的。

        (2)而弧度认为旋转一周,数值会从变化到,这种计量方法包含了圆周率,这是圆的本质特征,所以它会是更好的计量方法。

下面再来定量的分析,通过计算来展示下弧度是更好的计量方法。

3 弧长和扇形面积

假设圆的半径为,其中有某角:

如果用弧度(下面用表示采用的是弧度)来计算弧长以及扇形的面积,因为弧度包含了圆周率,所以结果很简单:

而用角度(下面用表示采用的是角度)来计算的话,其结果会更复杂:

4 重要极限

在微积分中有一个重要的极限,用弧度和角度得到的答案也不一样。

4.1 弧度

首先引入一个单位圆,从中取角:

中,根据三角函数,容易得到以及

以及:

借助上一节推导过弧度下的扇形面积,上面不等式可以写作:

最终利用夹逼定理可以求出:

4.2 角度

如果用角度的话,那么这些不等式:

借助角度下的扇形面积,可以写作:

说明下,上面的是角度制下的三角函数,它们接受角度值,和弧度制下的三角函数关系为:

接着用夹逼定理,最终可得:

5 求导

基于上述重要极限的求解,可得弧度制下的导数为:

通过链式法则就可以得到角度制下的导数为:

6 总结

可以看到,在弧度制下,从弧长计算开始就很简单,这种简单一直延续到各种计算:

可以想象,除了上述结果外,各种三角函数、对应泰勒级数等在弧度制下都会最简单,所以我们会使用弧度。

关注马同学
马同学高等数学
微信公众号:matongxue314